Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2783: 93-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478227

RESUMO

Murine models of obesity or reduced adiposity are a valuable resource for understanding the role of adipocyte dysfunction in metabolic disorders. Adipose tissue stromal vascular cells or primary adipocytes derived from murine adipose tissue and grown in culture are essential tools for studying the mechanisms underlying adipocyte development and function. Herein, we describe methods for the isolation, expansion, and long-term storage of murine adipose-derived stromal/stem cells, along with protocols for inducing adipogenesis to white or beige adipocytes in this cell population and osteogenic differentiation. Isolation of the adipose stromal vascular fraction cells for flow cytometric analysis is also described.


Assuntos
Adipogenia , Adiposidade , Camundongos , Humanos , Animais , Citometria de Fluxo/métodos , Osteogênese , Adipócitos , Tecido Adiposo , Diferenciação Celular , Obesidade/metabolismo , Células-Tronco
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686232

RESUMO

Thiazolidinediones (TZD) significantly improve insulin sensitivity via action on adipocytes. Unfortunately, TZDs also degrade bone by inhibiting osteoblasts. An extract of Artemisia dracunculus L., termed PMI5011, improves blood glucose and insulin sensitivity via skeletal muscle, rather than fat, and may therefore spare bone. Here, we examine the effects of PMI5011 and an identified active compound within PMI5011 (2',4'-dihydroxy-4-methoxydihydrochalcone, DMC-2) on pre-osteoblasts. We hypothesized that PMI5011 and DMC-2 will not inhibit osteogenesis. To test our hypothesis, MC3T3-E1 cells were induced in osteogenic media with and without PMI5011 or DMC-2. Cell lysates were probed for osteogenic gene expression and protein content and were stained for osteogenic endpoints. Neither compound had an effect on early stain outcomes for alkaline phosphatase or collagen. Contrary to our hypothesis, PMI5011 at 30 µg/mL significantly increases osteogenic gene expression as early as day 1. Further, osteogenic proteins and cell culture mineralization trend higher for PMI5011-treated wells. Treatment with DMC-2 at 1 µg/mL similarly increased osteogenic gene expression and significantly increased mineralization, although protein content did not trend higher. Our data suggest that PMI5011 and DMC-2 have the potential to promote bone health via improved osteoblast maturation and activity.


Assuntos
Artemisia , Calcinose , Resistência à Insulina , Corantes , Osteoblastos , Proliferação de Células , Extratos Vegetais/farmacologia
3.
Am J Clin Nutr ; 117(4): 802-813, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796647

RESUMO

BACKGROUND: Recent 3-dimensional optical (3DO) imaging advancements have provided more accessible, affordable, and self-operating opportunities for assessing body composition. 3DO is accurate and precise in clinical measures made by DXA. However, the sensitivity for monitoring body composition change over time with 3DO body shape imaging is unknown. OBJECTIVES: This study aimed to evaluate the ability of 3DO in monitoring body composition changes across multiple intervention studies. METHODS: A retrospective analysis was performed using intervention studies on healthy adults that were complimentary to the cross-sectional study, Shape Up! Adults. Each participant received a DXA (Hologic Discovery/A system) and 3DO (Fit3D ProScanner) scan at the baseline and follow-up. 3DO meshes were digitally registered and reposed using Meshcapade to standardize the vertices and pose. Using an established statistical shape model, each 3DO mesh was transformed into principal components, which were used to predict whole-body and regional body composition values using published equations. Body composition changes (follow-up minus the baseline) were compared with those of DXA using a linear regression analysis. RESULTS: The analysis included 133 participants (45 females) in 6 studies. The mean (SD) length of follow-up was 13 (5) wk (range: 3-23 wk). Agreement between 3DO and DXA (R2) for changes in total FM, total FFM, and appendicular lean mass were 0.86, 0.73, and 0.70, with root mean squared errors (RMSEs) of 1.98 kg, 1.58 kg, and 0.37 kg, in females and 0.75, 0.75, and 0.52 with RMSEs of 2.31 kg, 1.77 kg, and 0.52 kg, in males, respectively. Further adjustment with demographic descriptors improved the 3DO change agreement to changes observed with DXA. CONCLUSIONS: Compared with DXA, 3DO was highly sensitive in detecting body shape changes over time. The 3DO method was sensitive enough to detect even small changes in body composition during intervention studies. The safety and accessibility of 3DO allows users to self-monitor on a frequent basis throughout interventions. This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults; https://clinicaltrials.gov/ct2/show/NCT03637855); NCT03394664 (Macronutrients and Body Fat Accumulation: A Mechanistic Feeding Study; https://clinicaltrials.gov/ct2/show/NCT03394664); NCT03771417 (Resistance Exercise and Low-Intensity Physical Activity Breaks in Sedentary Time to Improve Muscle and Cardiometabolic Health; https://clinicaltrials.gov/ct2/show/NCT03771417); NCT03393195 (Time Restricted Eating on Weight Loss; https://clinicaltrials.gov/ct2/show/NCT03393195), and NCT04120363 (Trial of Testosterone Undecanoate for Optimizing Performance During Military Operations; https://clinicaltrials.gov/ct2/show/NCT04120363).


Assuntos
Composição Corporal , Imagem Óptica , Masculino , Adulto , Feminino , Humanos , Absorciometria de Fóton/métodos , Estudos Transversais , Estudos Retrospectivos , Composição Corporal/fisiologia , Impedância Elétrica , Índice de Massa Corporal
4.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203217

RESUMO

Intermittent cold exposure (ICE) has garnered increased attention in popular culture, largely for its proposed effects on mood and immune function, but there are also suggestions that the energy-wasting mechanisms associated with thermogenesis may decrease body weight and fat mass. Considering the continued and worsening prevalence of obesity and type II diabetes, any protocol that can reduce body weight and/or improve metabolic health would be a substantial boon. Here, we present a narrative review exploring the research related to ICE and adipose tissue. Any publicly available original research examining the effects of repeated bouts of ICE on adipose-related outcomes was included. While ICE does not consistently lower body weight or fat mass, there does seem to be evidence for ICE as a positive modulator of the metabolic consequences of obesity, such as glucose tolerance and insulin signaling. Further, ICE consistently increases the activity of brown adipose tissue (BAT) and transitions white adipose tissue to a phenotype more in line with BAT. Lastly, the combined effects of ICE and exercise do not seem to provide any additional benefit, at least when exercising during ICE bouts. The majority of the current literature on ICE is based on rodent models where animals are housed in cold rooms, which does not reflect protocols likely to be implemented in humans such as cold water immersion. Future research could specifically characterize ICE via cold water immersion in combination with controlled calorie intake to clearly determine the effects of ICE as it would be implemented in humans looking to lower their body weight via reductions in fat mass.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Humanos , Tecido Adiposo Marrom , Peso Corporal , Obesidade , Água
5.
Am J Physiol Endocrinol Metab ; 320(6): E1053-E1067, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843280

RESUMO

Ketogenic diets (KDs) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 wk, whereas controls (Con) received a low-fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). After 3 wk on the diet, mice began treadmill training 5 days/wk, 60 min/day for 3 wks. The NPKD increased body weight and fat mass, whereas ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, whereas the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α and markers of mitochondrial fission/fusion. Pyruvate oxidative capacity was unchanged by either intervention, whereas ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall, these results suggest that a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity.NEW & NOTEWORTHY A ketogenic diet with normal protein content (NPKD) increases body weight and fat mass, increases intramuscular triglyceride storage, and upregulates pathways related to protein metabolism. In combination with exercise training, a NPKD induces additive and/or synergistic activation of AMPK, PGC-1α, mitochondrial fission/fusion genes, mitochondrial fatty acid oxidation, and peroxisomal adaptations in skeletal muscle. Collectively, results from this study provide mechanistic insight into adaptations in skeletal muscle relevant to keto-adaptation.


Assuntos
Dieta Cetogênica , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Peroxissomos/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/fisiologia , Oxirredução , Estresse Oxidativo/fisiologia
6.
Sleep Breath ; 25(1): 537-544, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32948936

RESUMO

PURPOSE: Sleep is essential for overall health and can impact academic performance. Prior research reports reduced sleep time in college students. Poor sleep may impact physical activity (PA) and sedentary behavior, or vice versa, but has not been examined extensively in this population. Therefore, the purpose of this study was to examine markers of sleep quality, PA, and sedentary behavior in college students using objective means. METHODS: A convenience sample of college students underwent body composition analysis and 7-day objective PA and sleep assessment via accelerometry. RESULTS: Among 81 college students (53 women), there was no association between total sleep time (TST) and weekly average PA. TST was negatively associated with sedentary minutes per day, sedentary bouts per day, and total time in sedentary bouts per day. Greater sedentary bouts per day and average sedentary minutes per day were seen in those with a TST < 6 h, with no difference in body composition. Further, TST was negatively associated with sedentary minutes accumulated on the subsequent day, for all 7 days. CONCLUSION: In a primarily residential college student cohort, poor sleep is associated with sedentary behavior more than PA. These students, who require a high amount of transport PA to and from campus during the week, are compensating by sleeping more and moving less on the weekend.


Assuntos
Acelerometria , Comportamento Sedentário , Privação do Sono/psicologia , Exercício Físico , Feminino , Humanos , Masculino , Sono , Privação do Sono/complicações , Estudantes/estatística & dados numéricos , Adulto Jovem
7.
Exp Physiol ; 105(8): 1373-1383, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32495341

RESUMO

NEW FINDINGS: What is the central question of this study? We sought to investigate whether young adults reporting low sleep quality possessed lower vascular function and altered autonomic nervous system modulation when compared with young adults reporting high sleep quality. What is the main finding and its importance? The study revealed that in young adults reporting low sleep quality, neither vascular nor autonomic function was significantly different when compared with young adults reporting high sleep quality. These findings suggest that young adults are either not substantially impacted by or can adequately adapt to the negative consequences commonly associated with poor sleep. ABSTRACT: The aim of the study was to investigate whether young adults reporting low sleep quality also possessed lower vascular function, potentially stemming from altered autonomic nervous system modulation, when compared with young adults reporting high sleep quality. Thirty-one healthy young adults (age 24 ± 4 years) underwent a 7 night sleep assessment (Actigraph GT3X accelerometer). After the sleep assessment, subjects meeting specific criteria were separated into high (HSE; ≥85%; n = 11; eight men and three women) and low (LSE; <80%; n = 11; nine men and two women) sleep efficiency groups. Peripheral vascular function was assessed in the upper and lower limb, using the flow-mediated dilatation technique in the arm (brachial artery) and leg (superficial femoral artery). Heart rate variability was evaluated during 5 min of rest and used frequency parameters reflective of parasympathetic and/or sympathetic nervous system modulation (high- and low-frequency parameters). By experimental design, significant differences in sleep quality between groups were reported, with the LSE group exhibiting a longer time awake after sleep onset, higher number of awakenings and longer average time per awakening when compared with the HSE group. Despite these differences in sleep quality, no significant differences in upper and lower limb vascular function and heart rate variability measures were revealed when comparing the LSE and HSE groups. Additionally, in all subjects (n = 31), no correlations between sleep efficiency and vascular function/autonomic modulation were revealed. This study revealed that low sleep quality does not impact upper or lower limb vascular function or autonomic nervous system modulation in young adults.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Extremidade Inferior/fisiologia , Sono/fisiologia , Adulto , Pressão Sanguínea , Exercício Físico , Feminino , Frequência Cardíaca , Humanos , Masculino , Fluxo Sanguíneo Regional , Sistema Nervoso Simpático/fisiologia , Adulto Jovem
8.
Med Sci Sports Exerc ; 52(1): 37-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389908

RESUMO

PURPOSE: Studies suggest ketogenic diets (KD) produce favorable outcomes (health and exercise performance); however, most rodent studies have used a low-protein KD, which does not reflect the normal- to high-protein KD used by humans. Liver has an important role in ketoadaptation due to its involvement in gluconeogenesis and ketogenesis. This study was designed to test the hypothesis that exercise training (ExTr) while consuming a normal-protein KD (NPKD) would induce additive/synergistic responses in liver metabolic pathways. METHODS: Lean, healthy male C57BL/6J mice were fed a low-fat control diet (15.9% kcal protein, 11.9% kcal fat, 72.2% kcal carbohydrate) or carbohydrate-deficient NPKD (16.1% protein, 83.9% kcal fat) for 6 wk. After 3 wk on the diet, half were subjected to 3-wk treadmill ExTr (5 d·wk, 60 min·d, moderate-vigorous intensity). Upon conclusion, metabolic and endocrine outcomes related to substrate metabolism were tested in liver and pancreas. RESULTS: NPKD-fed mice had higher circulating ß-hydroxybutyrate and maintained glucose at rest and during exercise. Liver of NPKD-fed mice had lower pyruvate utilization and greater ketogenic potential as evidenced by higher oxidative rates to catabolize lipids (mitochondrial and peroxisomal) and ketogenic amino acids (leucine). ExTr had higher expression of the gluconeogenic gene, Pck1, but lower hepatic glycogen, pyruvate oxidation, incomplete fat oxidation, and total pancreas area. Interaction effects between the NPKD and ExTr were observed for intrahepatic triglycerides, as well as genes involved in gluconeogenesis, ketogenesis, mitochondrial fat oxidation, and peroxisomal markers; however, none were additive/synergistic. Rather, in each instance the interaction effects showed the NPKD and ExTr opposed each other. CONCLUSIONS: An NPKD and an ExTr independently induce shifts in hepatic metabolic pathways, but changes do not seem to be additive/synergistic in healthy mice.


Assuntos
Dieta Cetogênica , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Ácido 3-Hidroxibutírico/sangue , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Cetonas/metabolismo , Leucina/metabolismo , Metabolismo dos Lipídeos , Glicogênio Hepático/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Oxirredução , Pâncreas/metabolismo , Hormônios Pancreáticos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/metabolismo , Triglicerídeos/metabolismo
9.
Int J Exerc Sci ; 12(2): 1161-1168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839843

RESUMO

The purpose of this case study is to compare a Type 2 diabetic's postprandial glucoregulatory ability under two different room lighting conditions. The subject was a 56-year-old physically active male with well controlled blood glucose levels (HbA1c ≤ 6% for 5 y) from a combination of diet, exercise, and medication. Two hours post evening meal (380 kcal, 18 g fat, 44 g carbohydrate, 12 g protein), a 45 g carbohydrate challenge was given, and blood glucose was measured every 30 minutes for 2.5 hours under three conditions: dim light (<50 lux) (DL), bright light (>40000 lux) (BL), and bright light plus 6 mg melatonin (BLM). Each condition was repeated 3 times over a period of 6 months with each trial a minimum of seven days apart. The area under the average glucose concentration vs. time plot was different between the three conditions (BL = 909 ± 76; DL = 1078 ± 106; and BLM = 1130 ± 45 mmol·min·l-1). Visual inspection of the average blood glucose vs. time plot suggested that DL and BLM displayed very similar patterns and magnitude, with both DL and BLM having the blood glucose concentrations at each time point that are noticeably greater than BL. Additionally, the average (± standard deviation) blood glucose concentrations for DL (8.8 ± 0.9 mmol·l-1) and BLM (9.1 ± 1.1 mmol·l-1) were respectively 18% and 22% greater than BL (7.5 ± 0.5 mmol·l-1). Melatonin and/or dim light can reduce a Type 2 diabetic's glucoregulatory ability.

10.
J Phys Act Health ; 16(10): 916-924, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476736

RESUMO

BACKGROUND: This study sought to determine the impact of an acute prior bout of high-intensity interval aerobic exercise on attenuating the vascular dysfunction associated with a prolonged sedentary bout. METHODS: Ten young (24 ± 1 y) healthy males completed two 3-hour sessions of prolonged sitting with (SIT-EX) and without (SIT) a high-intensity interval aerobic exercise session performed immediately prior. Prior to and 3 hours into the sitting bout, leg vascular function was assessed with the passive leg movement technique, and blood samples were obtained from the lower limb to evaluate changes in oxidative stress (malondialdehyde and superoxide dismutase) and inflammation (interleukin-6). RESULTS: No presitting differences in leg vascular function (assessed via passive leg movement technique-induced hyperemia) were revealed between conditions. After 3 hours of prolonged sitting, leg vascular function was significantly reduced in the SIT condition, but unchanged in the SIT-EX. Lower limb blood samples revealed no alterations in oxidative stress, antioxidant capacity, or inflammation in either condition. CONCLUSIONS: This study revealed that lower limb vascular dysfunction was significantly attenuated by an acute presitting bout of high-intensity interval aerobic exercise. Further analysis of lower limb blood samples revealed no changes in circulating oxidative stress or inflammation in either condition.


Assuntos
Endotélio Vascular/fisiopatologia , Exercício Físico , Perna (Membro)/irrigação sanguínea , Estresse Oxidativo/fisiologia , Postura/fisiologia , Doenças Vasculares/prevenção & controle , Adulto , Exercício Físico/fisiologia , Voluntários Saudáveis , Humanos , Inflamação , Interleucina-6/sangue , Extremidade Inferior , Masculino , Malondialdeído/sangue , Comportamento Sedentário , Postura Sentada , Superóxido Dismutase/sangue , Virginia , Adulto Jovem
11.
J Appl Physiol (1985) ; 127(1): 143-156, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095457

RESUMO

Adaptations in hepatic and skeletal muscle substrate metabolism following acute and chronic (6 wk; 5 days/wk; 1 h/day) low-intensity treadmill exercise were tested in healthy male C57BL/6J mice. Low-intensity exercise maximizes lipid utilization; therefore, we hypothesized pathways involved in lipid metabolism would be most robustly affected. Acute exercise nearly depleted liver glycogen immediately postexercise (0 h), whereas hepatic triglyceride (TAG) stores increased in the early stages after exercise (0-3 h). Also, hepatic peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) gene expression and fat oxidation (mitochondrial and peroxisomal) increased immediately postexercise (0 h), whereas carbohydrate and amino acid oxidation in liver peaked 24-48 h later. Alternatively, skeletal muscle exhibited a less robust response to acute exercise as stored substrates (glycogen and TAG) remained unchanged, induction of PGC-1α gene expression was delayed (up at 3 h), and mitochondrial substrate oxidation pathways (carbohydrate, amino acid, and lipid) were largely unaltered. Peroxisomal lipid oxidation exhibited the most dynamic changes in skeletal muscle substrate metabolism after acute exercise; however, this response was also delayed (peaked 3-24 h postexercise), and expression of peroxisomal genes remained unaffected. Interestingly, 6 wk of training at a similar intensity limited weight gain, increased muscle glycogen, and reduced TAG accrual in liver and muscle; however, substrate oxidation pathways remained unaltered in both tissues. Collectively, these results suggest changes in substrate metabolism induced by an acute low-intensity exercise bout in healthy mice are more rapid and robust in liver than in skeletal muscle; however, training at a similar intensity for 6 wk is insufficient to induce remodeling of substrate metabolism pathways in either tissue. NEW & NOTEWORTHY Effects of low-intensity exercise on substrate metabolism pathways were tested in liver and skeletal muscle of healthy mice. This is the first study to describe exercise-induced adaptations in peroxisomal lipid metabolism and also reports comprehensive adaptations in mitochondrial substrate metabolism pathways (carbohydrate, lipid, and amino acid). Acute low-intensity exercise induced shifts in mitochondrial and peroxisomal metabolism in both tissues, but training at this intensity did not induce adaptive remodeling of metabolic pathways in healthy mice.


Assuntos
Aclimatação/fisiologia , Fígado/metabolismo , Fígado/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Teste de Esforço/métodos , Glicogênio/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Oxirredução , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...